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Abstract. Based upon a variational principle derived in a preceding paper, expressions for the magneto-elastic 
buckling values for ferromagnetic or superconducting systems are given. These relations are evaluated for systems 
of slender beams. Explicit buckling values are calculated for a single ferromagnetic or superconducting beam of 
arbitrary cross-section, and for systems of two parallel ferromagnetic or superconducting rods. In the analysis needed 
for the calculation of the intermediate (i.e., rigid-body) and the perturbed magnetic fields, an intensive use of 
methods inherent in the theory of  complex functions is made. In conclusion our results for a set of two super- 
conducting rods are compared with the results of  a mathematically less complicated, but also less rigorous, theory. 

1. I n t r o d u c t i o n  

In [1] the authors derived an explicit relation for a magneto-elastic buckling value by way 
of a variational principle. This relation was accompanied by equations and boundary 
conditions for both the intermediate (i.e. pre-buckled or rigid-body) fields and for the 
perturbed (due to buckling) fields. These fields must be solved first, and then mere sub- 
stitution of the results into the expression for the buckling value immediately yields an 
explicit value for the critical or buckling field. In [1] detailed evaluations were given for (i) 
soft ferromagnetic bodies, and (ii) superconductors. 

We start here with recapitulating the main results of  [1]. Firstly, for a soft ferromagnetic 
body in vacuum placed in a uniform field of field strength B0 one has for the critical value 
of B 0 the relation (cf. [1], (6.22); for the definitions of the symbols we refer to [1]) 

+ Bkuk)-UN + B, u i - ~  (q~ + Bku~) - B~ukBjuj,,N~ 

"~-1nknk(Uj,jU i -- ui,juj)Nii I d S -  fo-TjkUi, kU'j dV} 

• {1Tvfc-I1 ~2vekkeu+ektekt]dV} -1" (1.I) 

In this expression B and T are the normalized magnetic induction in the vacuum G § and the 
normalized stress tensor in the rigid-body state, which have to satisfy (cf. [1], (6.18)-(6.21)) 

d ivB = O, c u r l B  = O, x e G + ;  B x N = O, 

f~G (B, N) dS = O; B --, Bo/Bo, I xl - ,  oo, 

x e  OG; 
(: .2) 
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and 

T~j,: = 0, x e  G- ;  T~jNj = �89 B)N~, x e 3 G .  (1.3) 

Note  that T is not  completely determined by (1.3), but  this will do for our purposes. 
Moreover ,  since we have identified the intermediate state with the rigid-body state, there is 
no need anymore  to distinguish between Lagrange and Euler coordinates.  

The field ~k, occurring in (1.1), is the normalized per turbed magnetic potential,  due to the 
deflection u in buckling. For  qJ, we have derived in [1] the relations (cf. [1], (6.10), (6.14)) 

A~, = ~b,~ = 0, x ~ G + ;  O + B k u ,  = 0o, x e 3 G ;  

aO 
~o['c0--N dS = O; ~b ~ 0, Ix l  ~ ~ .  

(1.4) 

The displacement field u must  be chosen in such a way that it constitutes a reasonable 
representation for the deflection in buckling for the (mostly slender) body  under consider- 
ation. Clearly, this choice can only be made  after the shape o f  the body  (e.g., a plate or  a 
beam) is known. In the next section this will be made explicit for the case o f  a slender beam. 
The linear deformations % are related to ui by 

, uj,,). (1.5) eij = -~(uij + 

Whenever  we can succeed in solving (1.2)-(1.4) and make an acceptable choice for us, we 
only have to substitute the results in (1.1) to obtain a numerical value for the buckling field 
magni tude (in this case B0). It is this procedure that we shall follow in this paper. 

Secondly, we proceed with the recapitulation of  the analogous results for a superconduct-  
ing structure with total electric current I0. For  the critical current we have derived (cf. [1], 
(7.18)) 

g0 I2 - c [~b(B~u,j - Bijuj)  + BkBkau, uj - eo,,B,,Aj, k, uku, 

+ 2Bk(ei jkut -  eljkUi)(Aj,mUm).t + �89  ui,juj)]Ni dS 

-- fG-TjkUi'kUi'j dVt { 1- ~ ~G-(1---V 2"'"-~ e~keu+ ei, ekt)dV} -1, (1.6) 

while the constraints here are (cf. [1], (7.12), (7.15)) 

Bi = e l j kAk j (ord ivB  = 0), eukBk, j = 0 ( o r c u r l B  = 0), x E G + ;  

A = constant  (or (B, N) = 0), x ~ 3G; (1.7) 

n c(x), I 
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and 

T~. = 0, x ~ 6 - ;  T~Nj = - �89  B)N,, x a 0G, (1.8) 

and for the perturbed potential ~, 

A~ = 0, x ~ G+; 0---N = (Bjui,j - Bi,ju/)N,., x ~ OG; 

~ 0 ,  Ixl  ~ ~ -  

(1.9) 

In the next section, the above results will be further elaborated for the special case of an 
infinitely long beam, which is periodically supported. In Section 3, explicit buckling values 
are calculated for one beam of  arbitrary cross-section. The third section also serves as a first 
acquaintance with the mathematical methods that will be used in Section 4 to solve the 
buckling problem for a set of  two parallel rods. Buckling values are calculated for both 
ferromagnetic and superconducting rods. In the final section we present some special results 
and we compare our results with those following from a more simplified approach, based 
upon a generalization of the law of Biot and Savart. 

2. The slender beam 

Consider an infinitely long beam of  arbitrary cross-section. The beam is periodically sup- 
ported (simply supported or clamped), the distance between the supports being l. Let R be 
a characteristic length for the cross-section. Then, the beam is called slender if R/l  ~ 1. A 
coordinate system {Oel, e2, e3 } is chosen with the e3-axis along the central line of the beam, 
and the el- and e2-axes in the plane of the cross-section D -  along the principle axes of inertia. 
It is assumed that in buckling the beam deflects in the el-direction. We denote the deflection 
of the central line of  the beam in the e~-direction by w(z). In accordance with Bernoulli's 
theory for the bending of slender beams, we then choose the displacement field in an 
arbitrary point (x, y, z) of  the beam as 

ul = w ( z )  + � 8 9  2 - f ) w " ( z ) ,  

u2 = v x y w  "(z) ,  u3 = - x w ' ( z ) .  

(2.1) 

where v is Poisson's ratio and ' =  d/dz. 
The result s recapitulated in Section 1 have been derived in [1] under the restriction that 

the body is of  finite dimension. In the above example, however, this is no longer true. We 
can avoid this discrepancy by assuming that the fields are periodic in the z- or e3-direction 
with period p (p is related to/ ,  but does not need to be equal to l, and depends on the type 
of  support). In this case it is allowed to replace in (1.1) and (1.6) the finite region G- with 
boundary OG by the finite parts of  one period. Considering a final cross-section, separating 
two periods, we notice that the contributions due to points just before and just after this 
cross-section cancel each other. Hence, the truncated part of  0G only consists of  the lateral 
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surface of  the beam. Therefore, from now on one must read for G-  the finite domain of  one 
period, say z e (0, p), and for aG the lateral surface of  G-.  

We now are able to evaluate the integral in the denominator of  the right-hand sides of  (1.1) 
and (1.6). Since the integral represents the elastic energy of the beam, it is not surprising to 
find that (2.1) implies that this term is equal to the classical energy for a slender beam in 
bending (apart from a factor E/2), i.e. 

(v ) 
1 fG- 1 -- 2v ekkeu + ek'ekl dV = Iy fPo w"2(z) dz, (2.2) 

l + v  

where 

Iy = fn_ x 2 dS, (2.3) 

the moment of  inertia about  the y-axis. Note that in the derivation of  (2.2) it is used 
that 

II R"w~")(z) II = O((R/l)")  II w(z) II, (2.4) 

and that O(R2/12)-terms a r e  neglected with respect to unity. 
We assume that the bias field 130 for the ferromagnetic beam is perpendicular to the e3-axis, 

and that for the superconducting beam the unperturbed current runs in the e3-direction. For 
both cases, the problem for the rigid-body field is then purely two-dimensional, i.e. 
B = B (x, y) and (B, e3) = 0. The problem for the perturbed potential ~b can be reduced to 
a two-dimensional problem by the separation of  variables 

d/(x, y, z) - ~o = ok(x, y)w(z) ,  OF), (2.5) 

0 (x, y, z) = ~b (x, y) w (z), (S). 

Note: We try, whenever possible, to treat the ferromagnetic and the superconducting case 
simultaneously. However when distinction is necessary, we label the ferromagnetic relations 
with a suffix (F) and the superconducting ones with (S). 

The separation according to (2.5) is only then consistent with the constraint A~, = 0 if 
w(z) satisfies the relation 

w"(z) + 2:w(z) = O, (2.6) 

where the real parameter 2 is a separation constant, which is related to l through the support 
conditions (e.g., for a cantilever 2 = n/21, and for a simply supported beam 2 = nil). The 
parameter 2 is proportional to and always of  the same order as l -  1 and, hence, the parameter 
6 defined by 

6 = 2R ( = O ( R / l )  ,~. 1), (2.7) 
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is very small. Note that 6 is a measure for the slenderness of  the beam. With (2.5) and (2.6), 
the constraint AO = 0, for x e G § transforms into the following constraint for q~ 

A~b(x, y) = 22~b(x, y), (x, y) e D +, (2.8) 

where, now, A is the two-dimensional Laplace operator and D + is the domain of the vacuum 
in the e~, e2-plane. 

3. Buckling values for a single ferromagnetic or superconducting beam 

Consider a slender beam as described in the preceding section. For  the ferromagnetic case 
the beam is supposed to be placed in a uniform magnetic field B 0. The basic field B 0 is 
directed in the e,-direction, which is taken as the axis of  lowest bending stiffness. The 
deflection in buckling is then indeed in the e~-direction. This also holds true for the 
superconducting beam. At this stage we can eliminate a small inconvenience in our formula- 
tion. The normalized fields B, 7 ~ and ~ (see [1], (7.17)) are not dimensionless. Therefore, we 
introduce new dimensionless normalized variables by (R is a characteristic measure for the 
cross-section) 

= 2xR 2xR 2xR (2xR) 2 
/zo-~oB' A - ~ i  oA,  ~ = ~--~o ~k, T - ~ Ig  T,(S). (3.1) 

This normalization also implies that the normalized pre-stresses 7~j are of the same order of 
magnitude with respect to the small parameter 6 as the magnetic components/~.. There are 
only two minor changes due to this modification. Firstly, in the left-hand side of  (1.6) we 
must replace 

E (2nR)2E 
/ao~o 2 ~ g ~  (S), (3.2) 

and secondly, with the current I0 in the e3-direction, the constraint at infinity ( 1 . 7 )  4 c a n  be 
made explicit, yielding (see also [1], (7.5)) (omitting the hats from now on) 

R 
a - (--sin 0ex + cos 0%), [xl ~ oo, (S), (3.3) 

I xl 

where I x l  = ( x  z + y2)|/2 and 0 is the pole angle. 
We proceed with an evaluation of  the numerators of  the right-hand sides of  (1.1) and (1.6). 

The magnetic vector potential A for the rigid-body problem is of  the form A = A(x, y)e3, 
yielding B = B(x, y) and (B, e3 )  ----= B 3 = 0. Moreover, we assume that the supports of the 
beams are such that the stresses in the e 3- or z-direction are zero, i.e. 

Txz = Tyz = T= = 0. (3.4) 
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Together with the above results, we use the constraint relations for B and # of Section 1, and 
the equations (2.1), (2.2), (2.5) and (2.6) of  Section 2. Finally, for the sake of  simplicity, we 
neglect in the superconducting case (S) lateral contraction (i.e. v = 0). This results in the 
following asymptotic relations for the buckling values, deduced from (1.1) and (1.6), 

= fo~ Bx - ~  (d? + Bx)ds + O(~2), r --} 0, OF), (3.5.1) 

4 ~  R2 EIr24 [ 
izoI2o - ~ao -- (dp + B~) aBx~N 

62x q 
(B~ § B,:)Nx| ds + O 0 ' ) ,  ~ - '  0, (S). 2R 2 

(3.5.2) 

We note that, due to (1.4) 4, the (irrelevant) constant ~'0 does not contribute to (3.5.1) (in fact, 
the condition for ~, at infinity implies ~'0 = 0). Moreover, we make the convention that any 
term in the subsequent analysis of the form O (di n log k 6) will be referred to as an O (iS n)-term. 

For a complete solution we still need B and ~b. The intermediate field B can be solved from 
(1.2) or (1.7), whereas the perturbed potential tp = ~b(x, y) has to satisfy 

A~b = ).2~b, (x ,y)  e D + ;  ~b--. 0, x 2 + y2_.. ~ ;  

0 
+ B x  = 0,0F) ,  = 0, (S), (x, y) E OD. 

(3.6) 

It will turn out (see (3.12)) that  the leading terms in the right-hand sides of  (3.5) are of O(1) 
with respect to 6, for OF), and O(diz), for (S), which means that the higher-order terms in (3.5) 
are indeed negligible. 

Let the region D- ,  occupied by the cross-section of the beam in the x-y-plane, be finite, 
simply connected and sufficiently regular (in order that all of the manipulations that follow 
are allowed). Furthermore, let z be the normalized complex variable 

z = (x + iy)/R, (3.7) 

and S - ,  S + and C the regions in the z-plane corresponding with D- ,  D + and OD, respectively. 
Then, there exists exactly one conformal mapping 

z = h ( u )  (3.8) 

from the region {ull ul < 1} in the complex u-plane onto S +, such that 

h ( - 1 )  = --A, h ( 1 ) =  B, h ( o o ) =  ~ ,  

where - A and B are the intersections of  the boundary C of  S + with the negative and positive 
real axis in the z-plane, respectively (see Fig. 1). For this conformal mapping the number c 
defined by 

c = lim [h(u)/ul = lira Ih'(u)h (3.9) 
U ~ o o  r  
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Fig. 1. The conformal  mapp ing  z = h (u). 
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is finite and positive. Moreover, it is assumed that the cross-section is sufficiently regular 
providing that 

c = O(1) and 1/c = O(1), 6 --, 0, (3.10) 

implying that 

ARc = 6c = O(R / I ) ,~  1. (3.11) 

We can now give the final results for the buckling values. We shall present these first, together 
with some interpretations and specific results for special cross-sections, and we shall post- 
pone the proof until Subsection 3.1 at the end of  this section. 

The final formulae for the buckling values, which follow from (3.9) are 

2 ~  
~'~'~ty^ B2 = r(6c){1 + O(62)}, (F), (3.12.1) 

2 2 

4hEir I2 = F( tc)  2 
1 {1 + O(62)}, (S), (3.12.2) 

for 6 ~ O, where 

F( tc)  = - y  - log (�89 y = 0.577 (Euler's constant). (3.13) 

Before proving these results (in Subsection 3.1), we make some remarks. Firstly, the 
general form of  the results (3.12) holds irrespective of  the shape of  the cross-section. 
In fact, the shape of  the cross-section only enters these formulae through the number c. 
Hence, realizing that Iy is proportional t o / P ,  we see that, apart from a logarithmic factor, 
the buckling values B0 and I 0 are proportional to (R/I) 2 and to R/l, respectively, for every 
firfite cross-section. 
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Secondly, for a circular cross-section one has c = 1, and then the obtained results 
correspond completely with those known in literature (cf. [2], [3] for (F), and [4] for (S)). For  
a beam of  elliptic cross-section (a x b; a ~< b) one gets 

Re  = �89 + b), Iy = lrca3b. (3.14) 

Restricting ourselves to case (F) for a cantilever (2 = Ir/2l), we find from (3.12.1) for the 
buckling field 

B g b ( r c a )  4 (n(a +b)) (3.15) 
poE - 8a k 21J  F 4l " 

This result is in correspondence with [3], eq. (6.13), with #-~ ~ 0. 
Finally we consider a ferromagnetic cantilever o f  rectangular cross-section (a x b; 

a ~< b). Fo r  a rectangle it can be proved that c becomes (analogously to [5], p. 178) 

a 

Rc  = 2[E(p2  ) _ (1 - p 2 ) K ( p 2 ) ] '  (3.16) 

where p e (0, lx/~)  is the root  o f  the relation 

( a )  a E ( p : )  (1 p E ) K ( p 2 )  0 < <~ 1 
= E(1 -- pZ) _ p 2 K (  1 _ pZ), ~ , 

(3.17) 

and K and E are complete elliptic integrals of  the first and second kind, respectively. 
Moreover  

Iy = ]a3b. (3.18) 

Then, (3.12.1) yields (with 2 = r~/21) 

B 2 2b ( n a ~  4 ( I t R c ~  

poE - 3a---~k21J F \  2l J"  (3.19) 

In a previous paper  [6], one of  the authors  stated that  it was to be expected that  the buckling 
values for a narrow rectangular cross-section may be approximated by the corresponding 
values for an elliptic cross-section. To check this statement, we shall compare  the result (3.19) 
with (3.15) for an ellipse (at x bl), such that 

2 
al = o-a, b I = ob, o- = ( 3 / 0 1 / 4  . (3.20) 

In this case the rectangle and the ellipse have identical thickness-to-width ratio's and 
moments  o f  inertia Iy. Defining q as the quotient  o f  the buckling values we then find f rom 
(3.15) and (3.19) 

q = (Bo),tt,pse = r(zr(a, + bt ) /4 l )  " (3.21) 



A variational approach to magneto-elastic buckling problems 151 

Some q-values, for b/l = 0.1 and varying a/b are listed in Table 1. These values justify the 
expectation stated above.  

Table 1. Ratio of buckling values for rectangular and elliptic cross-sections 

a/b 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

Rc/b 1.180 1.121 1.061 1.000 0.938 0.875 0.810 0,743 0.672 0.595 
q 0.982 0.983 0.984 0.985 0.987 0.990 0.994 1.000 1.008 1.022 

We now proceed with the p roo f  of  the general results (3.12). 

3.1. Proof  o f (3 .12 )  

All manipulat ions in this section will be performed in the complex z-plane (with z according 
to (3.7)). We shall not  give detailed references in all steps o f  our calculations, but  for a 
general reference with respect to the methods  we use here we refer to [7]. Introducing the 
complex line element dz by 

R d z  = i ( N  x + iNy)dS = i N d s ,  (3.22) 

where (Nx, Ny) denotes the unit ou tward  normal  on C, and the complex derivative as 

0--~ = �89 ~x ' (3.23) 

we immediately derive the useful relation 

2dz~-~z = ds ~s + 0-N ' z s C .  (3.24) 

With the function F defined as 

F = B x -  iB,, z e S  + u C, (3.25) 

we rewrite the constraints (1.2) and (1.7), (3.3) for the intermediate state as 

F analytical, z ~ S +, 

i F  dz ~ •, OF); F dz ~ •, (S), z E C, 

F = 1 + O(z-2),OF);  F = - - i z  -~ + O ( z - 2 ) , ( S ) ,  z ~ oo. 

(3.26) 

A q~ = 4 O2q~(z' ~) = 62dp(z, ~). (3.27) 

For  the per turbed potential  ~b we have at our disposal the constraints (3.6). Consider q~ as 
~b(z, ~), then the Helmhol tz  equat ion (3.6)' can be written as (6 = 2R) 
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With the introduction of  the real-valued function 

f = f (z ,  5),= dp + Bx, z e S  + w C, (3.28) 

the constraints (3.6) 2,3 simplify to 

0f 
f = 0,(F), ON = 0,(S), z e C .  (3.29) 

After substitution of  (3.25) and (3.28) into (3.5) and with the use of (3.24) and the above 
constraints, the buckling formulae (3.5) can be transformed into 

p.oEly2' F ~ dz, (3.30.1) 
2Bo2 = Im ]c (F), 

4rC2 EIy 22 t52 

E 1 = I m f c  -- f d z z +  �88 t~2(z + 5) F 2 dz,(S). (3.30.2) 

In the above equations df/~z and f occur. Therefore, we first derive integral equations for 
~f/~z (F) and f (S) on C. 

The fundamental solutions of the Laplace and the Helmholtz equation are 

1 1 
G(z, 5, z0, 50) = 2n log [z - z01 = 4n [log (z - z0) + log (5 - 50)], 

1 
H(z, 5, z0, 50) = 2---~ K0(alz - z01), 

(3.31) 

respectively, where K 0 is the modified Bessel function of  the second kind of  order zero. These 
solutions satisfy 

A~G = - 6 o ( z  - z0); A~H -- 62H = --tSo(z - z0), (3.32) 

where 6o(z) is Dirac's delta function. Green's second identity, together with (3.26) and (3.27), 
implies for (x0, Y0) e D+, 

OH H Odp~ ds, (3.33) r  y o )  = - ON/ 

and 

( oG 
Bx(xo, Yo) = Bx(~ + fOP B,, ~-~ -- G c~g ] ds 
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= Bx(~176 + ~a. /ix- ds 

+ SoD (By O(Hos-- G) Bx O(HoN- G ) )  ds' (3.34) 

where in the latter step it is used that OBx/ON = -- OBy/as on 0D and one partial integration 
is performed. 

With use of (3.24) it can be shown that 

4 ~ d s  = Re - ~ 4 ~ d z  . (3.35) 

Analogously, and with the use of (3.25), the last integral of (3.34) can be transformed into 
a complex integral. Then (3.33) and (3.34) add up to 

2 fOHdz_2fcHO f ffzo, Zo) = Re F(oo) + 7 f c  ~ 7 ~zdZ 

2 • G) } S+" ~c F dz E (3.36) 7 , z0 

We note that both aH/Oz and ~G/az are of the form 

1 
+ regular term, 

47z(z -- z0) 

for z --* z0. Therefore, for z0 ~ C only the first integral on the right-hand side of (3.36) 
becomes singular. Using Plemelj's formulae (eft [7], or see (3.57)) we then obtain from (3.36) 
by letting z0 ~ C (since z0 and T0 are coupled on C, we denotef(z0, T0) byf(zo) for z0 on C) 

{ _2 ~ 2 0 . / "  
f(zo) = 2Re V(m) + , ~c f d z -  7 ~ c H ~ z d Z  

2 [,. F O(H - G) dz} z0 C, (3.37) 7 O z  ' 

where ~ stands for Cauchy's principal value (cf. [7]). At this point we have to consider for 
a moment  the ferromagnetic and the superconducting case separately. F rom the relations 
(3.29) (with the first one written as Of/Os = 0) it follows that 

i dz ~ N, OF); ~ dz E N, (S), z s C. (3.38) 
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Using these relations and the last rule of  (3.26) in (3.37) we deduce successively 

I fc H ~ dz 1 Re ~c F ~-  dz , 0F), (3.39.1) 

and 

jc f ~  dz - 7  ~c F 07 dz , (S), (3.39.2) f(z0) Re 

both for z 0 e C. 
In order to get a better uniformity between the (F) and (S) case, we introduce the auxiliary 

function A(s) e N by 

1 oO_f z ~ dz(s) _~ A(s) ,=_  ~ (z(s)) ds - s, 0 ~< s ~< L, (3.40) 

where s is the arc length parameter along C which stands in a one-to-one relationship with 
z on C, i.e. z = z(s) on C. Moreover, L is the total arc length of C and 

1 af 
1OF == 7 fC -07 dz ~ R. (3.41) 

From (3.40) it follows that 

1 0 f d z  = F dA(s) -~1 i 0z 1 _ ~  + ds, z E C ,  0 ~< s ~< L. (3.42) 

After the substitution of  (3.42) into (3.39.1) and one partial integration, (3.39.1) transforms 
into 

OH 2K~ 
- 2 ~ A - & - s  as = --4Re~cAOHdzoz - = 1 --~--jcndsf 

{ o ( u - G )  } - Re 2 i c F  07 dz , (r), z0 C. (3.43) 

The integral equations (3.39.2) and (3.43) are too complicated to solve them exactly. 
However, recalling that 6 is very small, we can write 

2 r t ( n -  G) = 1"(6) + O(a2), 

4rt O(H - -  G )  - -~62 {r'(6) + �89 - log Iz - Zol} (~, - :~o) + o(a4), (3.44) 
Oz 
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for 6 ~ 0, uniform in z, z0 �9 C. Introducing the first order approximat ions  for iA(z) and f ( z )  
by (ige �9 R and gs �9 ff~) 

iA(z) = ge(z) (1 + O(~2)), (F); f ( z )  = 62gs(Z ) (1 + O(~2)), (S), (3.45) 

respectively, and neglecting terms of  0(32 ) with respect to unity, we can approximate  (3.43) 
and (3.39.2) by 

1 gF(z) dz = 1 + xl z0lds  Re ~c ~c log [z -- -- F(6),  (F), (3.46.1) 

and 

{ 1 gs(Z) 
�89 + Re 

{ l  ) 
= R e  ~-~i~i~cF(Z)[log ]z -- z0[ -- F(~) - �89 -- ~0)dz , (S), (3.46.2) 

for z0 �9 C. Use of  the above definitions and approximat ions  in (3.30) results in the following 
set of  buckling relations 

#0 E/Y '~'4 2B0 2 {Yc ~ T iK/r } - Im F ds + ~c F ds , (F), (3 .47.1)  

and 

4rr2 EIy22 1 dz} - Im {~cF~--~gsSds +-~ fc  (z + 2)F 2 , (S). (3.47.2) 

~F ~F 
RF(Zo, ~o) = 1 + ~--~ I,. logo~ Iz -- Zol ds -- ErrS'-- F(6),  (3.48.1) 

and 

Rs(zo, ~o) = 

for zo �9 S -  ~ C. 

z0 . . ,  

Hence, for the calculation of  the buckling values we do not  need to know ge and gs 
completely, but  we only need the values of  the first integrals on the right-hand sides of  (3.47). 
Again the calculation of  these integrals runs for (F) and (S) mainly along the same lines. 
Firstly, we define two real-valued functions R F (z0, z0) and R s (z0, z0), for z0 �9 S -  w C, 
which for z 0 �9 C are equal to the right-hand sides of  (3.46), i.e. 
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For  later use we calculate the first derivatives with respect to z0 o f  these functions for 
z 0 e S - .  They read (use (3.26) 3'5) 

0RF = XF ds (3.49.1) 
Oz o 4nL fC z -- z 0' 

and 

aR s 1 [ 
OZo = 16~i~cF(Z)  l o g l z 0 - -  Zo] 2 z 2 - 2 ~ ]  d z + � 8 8  Zo ~ S - .  (3.49.2) 

The real and cont inuous function R(z0, 2o) possesses cont inuous derivatives in S -  and, 
furthermore,  it can be proved that 

d2R 
- 0, z 0 E S - .  (3.50) 

~Zoa~'o 

For  R F the p roo f  of  (3.50) is trivial (see (3.49.1)), whereas, for Rs, (3.50) follows from (3.49.2) 
with the use o f  the proper ty  that  for zo ~ S -  

1 fc F(z) dz = F(oo) = 0. (3.51) 
2hi z - z0 

We note that, due to (3.50) and because F dz ~ R on C, the integral 

1 
~c F(z) log [z - Zo 12 dz, zo ~ S - ,  

4---~ 

occurring in the right-hand side o f  (3.49.2) is a real constant  which will be denoted by Xs, 
i.e., (take z 0 = 0) 

1 
= ~ fc F(z) log I zl dz. (3.52) KS 

The relation (3.50) together with the properties o f  R(zo, 2o) mentioned above imply the 
existence o f  analytical functions ~FF(zo) and ~Fs(zo) for Zo ~ S -  u C, such that 

R(zo, 20) = Re~F(zo), z0 ~ S -  w C. (3.53) 

Differentiating (3.53) with respect to Zo, we obtain a relation, which will be used further on, 

OR(zo, 20) d~F(z~ 2 , z o E S - .  (3.54) 
dzo aZo 
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As a second step, we introduce the Cauchy integral 

~(z0 ) _ 1 ~ _g(__z)__ dz, z0 �9 C/C. (3.55) 
2~i Jc z - z o 

Then 

(i) ~(z)  analytical, z e C/C; 

(ii) ~(z)  = O(z-~) ,  z ~ oo; (3.56) 

1 g(z) dz, z 0 e C. (3.57) (iii) ~•  (z0) = -T- �89 + ~ ~c z---~Zo 

The relations (iii) are the well-known Plemelj-formulae, already mentioned before. Combin-  
ing these relations with the integral equations (3.46) and using that ig~, gs and the right-hand 
sides of  (3.46), i.e., RF and Rs, are all real, we straightforwardly find that 

R e d - ( z 0 )  = R(z0), z0 �9 C. (3.58) 

Fur thermore,  for case (F), it follows that 

R e ~ ( z 0 )  = R e ~ ( z 0 ) ,  z0 �9 C. (3.59) 

Finally, subtract ion o f  the Plemelj-formulae amounts  to 

dg d 
d-~ = ~ ( ~ -  - ~+ )' along C. (3.60) 

A compar ison of  (3.58) with (3.53) yields 

R e ( ~ -  (z0) -- ~F(z0)) = 0, z0 �9 C. (3.61) 

Use o f  a well-known result f rom the theory of  complex functions, saying that if the real part  
o f  an analytical function is zero at a boundary  C, this function can at most  be an imaginary 
constant  in the interior region S -  o f  C, now implies that 

r = ~P(Zo) + i#, z o �9 S -  u C, (3.62) 

where # is an irrelevant real constant.  
With the preceding results we can derive 

dg d 
~c F-~s ds = fc F - ~  (tb - - * + ) d s  = ~ c F d ~ P d z ,  (3.63) 

dz 
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fc F ( d @ Y  \ d z }  dz = 0, (3.64) 

because F d O / d z  tends to zero as (at least) O (z-2) at infinity. Explicit expressions for d~P/dz 
can be deduced from (3.54) and (3.49). From (3.54) and (3.49.1) we obtain 

dzo 2nL z 

Y - ~ T  (z0), zoeC, 
2-n-L z - Zo / 

(3.65.1) 

with the use of  the Plemelj formulae. Analogously, we obtain from (3.54) and (3.49.2) 
together with (3.51) and (3.52) 

) dV s = _ 1 U-(z) dz + �89 - Ks] 
dzo 8~i z - Zo 

)+ 1 -zr_.(z)_ dz  - �88 + �89 [F(6) - Ks], zo E C. (3.65.2) 
8~i z -- z o 

We now have to substitute (3.65) into (3.63) and, subsequently, the result into (3.47). After 
some elementary calculations we finally arrive at the following buckling relations 

~oe1,,V 
2Bo2 = xr(1 + O(62)), (IF), (3.66.1) 

4gEly~ 2 
---- (F (6 )  -- x s --  �89 + O(t$2)), (S). (3.66.2) 

At this point we still have to determine the constants KF and K s. It is only in this last step 
that the conformal mapping (3.8) (and, hence, the specific shape of  the cross-section) enters 
in our analysis. For the calculation of  KF we do not use its definition (3.4.1), but a result that 
is a consequence of  (3.58)-(3.59). Considering @+ (z) -- @~ (h(u)) -- q3~ (u), I u l >1 1, as a 
function of  u, we see that 

1 j. R e q 3 + d u  R e {  1 fl q 3 + d u l  = Re{@+(oo) }  = 0" (3.67) 
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On the other hand (3.59), (3.58) and (3.48.1) imply 

1 Re@+ du 1 R du 
2ni J'lul=l ~ = 2~z----i fl,l=' F 

( ) 1 du  + _ _ _ _  - -  J'c log I z - Zol dso = 12 1 -- x!~ F(6) ~ ,1=1 u 2~L2ni ,l=l u 

1 ( 1  ~:F F ( 6 ) )  + XF = ~ - -s ~ f~ I(uo, rio) dso, 

where 

I(uo, rio) 2n---il ~uM =t log Ih(u) - h(u0)l ~du (eR). 

Extending the domain of I to I u01 >~ 1, we see that I satisfies 

Ol 1 h'(uo) ~1 du 1 
(i) 0u-"-o = 2 2hi ul=l u(h(u) -- h(uo)) - 2u0' lu01 > 1, 

(ii) I = log Icuol + O(uol ) ,  In01 ~ oo; 

in accordance with (3.9). Therefore, the real integral I is equal to 

I(uo, rio) = log Icu0l = log c + log lu0l, l u01 /> 1. 

Substitution of (3.72) into (3.68) with simultaneous use of (3.67) leads us to 

1 -- x--s + X! logc  = 0, 
~z 7'/7 

or, with the definition (3.13), 

7~ 7~ 
K F ~ = F(3) -- log c F(tic)" 

With z = h(u) the expression (3.52) for ~c s becomes 

1 
= 2---~ fc F(z) log [h(u)[ dz KS 

1 [ i-L ] 
- 2xfcF(Z)  logc  + log h(u) _ loglu l  dz 

c u  

l ogc  1 (h (u ) ]  
- 2n ~c F(z) dz + Re ~ ;c F(z)log dz, \ ~ u j  

159 

(3.68) 

(3.69) 

(3.70) 

(3.71) 

(3.72) 

(3.73) 

(3.74) 

(3.75) 
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because of  the (S)-property that Fdz  ~ ~, for z ~ C. Here, ~ is a complex constant such that 
h(u)/6u ~ 1, for u ~ co (hence, 161 = e). Since h(u)/6u is an analytical function, unequal 
to zero, in S § the function log (h(u)/6u) is also analytical in S + and tends to zero for u ~ ~ .  
Moreover F(z) = - i z  -~ + O(z-2),  for z ---, ~ and, hence the second integral in the last 
right-hand side of  (3.75) is zero, while the first one becomes equal to 2zt. Hence, (3.75) 
amounts to 

tr s = log c. (3.76) 

Substitution of  (3.74) and (3.76) into the buckling relations (3.66) ultimately results in 

fl0 EL,, )~ 4 _ 7~ 

2B0 ~ r(~c) 
- -  (1 + O(32)), (F), (3.77.1) 

4~EI~,22 
- (F(6c)  - �89 + O(62)), (S). (3.77.2) 

mIo  2 

This completes the proof  of  (3.12). 

4. A set of  two parallel beams 

In this section we consider systems of  two identical, parallel, infinitely long beams (as 
described in Section 2). The beams can be either soft ferromagnetic (F) or superconducting 
(S). In order to keep our analysis manageable, we restrict ourselves to cross-sections which 
show double symmetry. The distance between the centres of the cross-sections is 2a. A 
coordinate system {Oel, e:, e 3 } is chosen with the origin O midway between the centres of 
the cross-sections, the e3-axis parallel to the central lines of  the beams and the el-axis 
through the centres of  the cross-sections. The el-axis coincides with one of  the symmetry axes 
of  the cross-sections. In the ele2-plane the cross-sections are denoted by DI and D2, with 
boundaries OD~ and OD2, respectively, and the vacuum region is denoted by D § The centre 
of D~ lies on the positive e~-axis (coordinates (a, 0)). Our general approach applies to 
arbitrary, however doubly symmetric, cross-sections, but explicit numerical results will only 
be given for circular cross-sections. 

The basic field B0 (case (F)) is taken in the el-direction (in Section 5 we shall discuss the 
somewhat more complicated case that B0 makes an arbitrary angle 00 with the e~-axis). In 
case (S), we assume that the total currents in the two superconducting beams are equal in 
magnitude (I0) , but these currents can be either in equal (case (Se)) or in opposite directions 
(case (S~ (the current in the first beam, cross-section Dl, is always in the positive e 3-directiOn). 
Then, in all these cases the buckling displacement is along the et-axis. Moreover, we assume 
that the buckling displacements of  the two beams are equal but opposite. In fact, if the beams 
buckle in the same direction, the complete set behaves as one beam and it turns out that then 
the buckling load is much higher (i.e., at least O(6-1); see the preceding section) than the one 
we shall find in this section. Thus, we suppose that the displacement field (2.1) (for one beam) 
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here generalizes into 

161 

u,(x,  y) = w(z)  + �89 -- a) 2 -- yZ]w"(z),  

u2(x, y) = v(x  - a)yw"(z) ,  (4.1) 

u3(x, y) = - ( x  - a )w ' ( z ) ,  (x, y) e D { ,  

yielding the same expression for the elastic energy of  one beam as found in (2.2). Obviously, 
the elastic energies of  the two beams are equal. 

Again, all manipulations in this section will be performed in the complex z-plane, with z 
according to (3.7) and with all notations as introduced in Section 3 (e.g., c3Dl ~ CI ). There 
is no difficulty in verifying that, in analogy with Section 3, the relations (3.26) remain valid 
here. We only have to replace the explicit condition at infinity for case (S) by the more vague 
condition 

F - ~ 0 ,  z ~  ~ , ( S ) .  (4.2) 

This vagueness is due to the fact that the behaviour of  F for z ~ oo is different in the cases 
(S,) and (So); in case (Se) one has F = O(z- l ) ,  z ~ oo, whereas F = O(z-2), z ~ oo, in 
case (So). Of  great use in the following calculations are the symmetry relations (which are 
due to the double symmetry of  the cross-sections) 

F ( - z )  = F(z),  (F), 

F ( -  z) = - F(z), (S e); F ( - - z )  = F(z),  (So). 
(4.3) 

Finally, we need the following results for the integrals of  F(z)  along Cl, which can easily be 
verified, 

J'c, F dz = 0, (F); J'c, F dz = 2n, (S). (4.4) 

Likewise, the relations for the perturbed potential ~b remain practically the same as in 
Section 3. We only have to realize that (for w > 0) the displacement of  D~ is in the positive 
ej -direction, but that of  D2 is in the negative el -direction. Therefore, instead o f f  = ~b + Bx 
as in Section 3, we must here introduce 

f = f ( z ,  5) = I r + Bx, Re z > 0, 
( ~b - Bx, Rez  < 0. 

(4.5) 

However, we do not have to worry about this somewhat peculiar relationship, if we make 
use of  the trivial symmetry relations 

f ( - - z ,  --5) = - - f ( z ,  5), (F); 

f ( - - z ,  --~) = f ( z ,  5), (S,); f ( - - z ,  --~) = - - f ( z ,  ~), (S o). 
(4.6) 



162 P.H. van Lieshout, P.M.J. Rongen and A.A.F. van de Ven 

Thus, the relations (3.6) for q~ remain valid (OD ~ ODt) and the same holds true for the 
relations (3.29) forf(z) ,  which now refer to C,. Finally the formulae (3.30) for the buckling 
value may be applied here too, where the integration takes place over C,. However, in the 
(S)-formulae the O(62)-term in the integral on the right-hand side of  (3.30.2) may now be 
neglected, as the leading term in this case turns out to be of O(1). Since the influence of  the 
pre-stresses is enclosed in this O(62)-term, this means that the pre-stresses may be neglected 
now (note that this was not the case for the single superconducting beam). 

Considering (3.30) we conclude that we are only interested in the functions F(z) andf(z) ,  
for z ~ C,. In the same way as in the preceding section we can derive the following integral 
equation for f(z), z ~ C, (compare with the derivation of  (3.37) from (3.33)-(3.36), and 
realize that now C = C 1 k.) C 2 a n d f  = q~ - Bx on C2) 

2~ fOH 2 Of f(Zo) = 2Re  F(oo) + _  : dz , Jc --~-z dz -- t fc H-~z 

2 f c F O ( H -  G) 4 fc2FOH } t- 0z dz + -~ c~z dz , z 0 e C,. (4.7) 

The last term in the right-hand side of  (4.7) is descended from 

2fc2 BxO-N- oNjdS  = Re fc2F dz , z 0~C1,  (4.8) 

in the derivation of which a.o. the relation OBx/ON = -OBy/OS is used. 
In exact analogy with the preceding section we introduce, in the (F)-case, the auxiliary 

function A(s) by (3.40) and we denote the first-order approximation of  iA by gr(z) (see 
(3.45.1)). Moreover, we introduce the first-order approximation o f f ( z )  in the (S)-case 
according to 

f(z) = gs(z)(1 + O(62)), (4.9) 

(note that this is in contrast with (3.45)2). Using the approximations (3.44), the boundary 
conditions (3.29), the conditions at infinity (3.26) 4 and (4.2), and neglecting all terms of  order 
0(62) we derive from (4.7) the following two integral equations for gr(Z) and gs(z) (ige ~ •, 
gs ~ ~) 

1 gF(z) } 
Re ~ - - -  - d z  = R F ( z O )  , z o • CI, ( 4 . 1 0 . 1 )  dL 

Z - -  Z o 

and 

1 gs(z) } 
l gS (Zo )  -[- R e  ~ /  L " - -  - d z  = R s ( z o )  , z 0 ~: C I ,  

z - -  z 0 
(4.10.2) 
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- 2rcL fc, log lz - z0 [ds  + ;c2 l o g [ z  - z 01 ds 

F(6) { 1 fc 2 F(z) dz}, zoeC  1 (4.11) 
2zc (x(;) + x~)) + �89 -- Re ~ z - zo 

1 F(z) d z } ,  z0 6 C1. (4.12) Rs(zo) = Re ~ fC2 z - Zo 

Furthermore 

K~ ) 1 Of ~ )  1 Of 
= -i~C,~zdZ' = -t IC2~zzdZ; L = ~c, dS" (4.13) 

From the symmetry relations (4.6) it is evident that 

~(F 2) = -- x(~ ). (4.14) 

Hence, in the expression (4.11) the third term vanishes and the first two terms can be taken 
together to yield 

Rr(zo) = R e ( ~ c ,  log ds + �89 - Re ~ / ~ C , z  z o 
" + ' ~ 0  - -  ' " 

(4.15) 

Note that the integral equations (4.10) still contain integrals over C~. However, these 
integrals can with the use of  the symmetry relations for F(z) and f(z) easily be transformed 
in integrals over C1 (but this is postponed for the moment).  

The integral equations (4.10) are similar to the equations (3.46) of Section 3, and just as 
in that section these equations will be solved by Hilbert-methods. The analysis is exactly the 
same as the one presented in Section 3 between the eqs. (3.53)-(3.63) and, therefore, we 
immediately give the results, which read 

2B0Z Im fc, = Im + - -  

= Im T ~ c ,  F d s  + fc, F dz dz J d z  ,(F),  (4.16.1) 
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4n2 EIy22 62 dF 
~Ig  - Im fc , -~zgsdz  = Im fc F ds 

= i m { f c  F(dUgs d ~ -  dz} (4.16.2) 
\ dz dz ) , (S). 

Note that here (3.64) does not apply, because the region exterior to C1 is not simply 
connected but contains as a hole the region $2, corresponding to the cross-section of the 
second beam. 

The functions W (z) and ff~+ (z), occurring in (4.16), must be calculated from (compare with 
(3.57)-(3.58)) 

Re~[(z0)  = ReeF(Z0) = Rr(zo) = ReWF(Z0), z0 e C,, (F); (4.17.1) 

Im~-(z0)  = ImPs(Z0), Reds(Z0) = Rs(zo) = ReWs(Z0), z0 e C,, (S); (4.17.2) 

Up to here the results apply to arbitrary, but doubly symmetric cross-sections. For the 
explicit calculations of the right-hand sides of (4.16), however, we from now on restrict 
ourselves to circular cross-sections (radius R, Iy = nR4/4). The analysis is based on a 
conformal mapping from the exterior region S § onto a ring. For other than circular 
cross-sections the use of a conformal mapping is in principle also possible, but in that case 
our considerations are much more complex. 

For two circular cross-sections the conformal mapping reads (in the z-plane all distances 
are normalized with respect to R) 

z = # l + u  ~ a 1 - u '  # = - 1, m = ~ >  1. ( 4 . 1 8 )  

Under this mapping, the exterior region S + transforms into a ring bounded by concentric 
circles of radii ~ and ~- '  where 

= m - -  r ,  ~- '  = m + r ,  cce(0, 1), (4.19) 

(see Fig. 2.) 

L m _L m _i 

/z =l ,lC- 5- 
<~ , .  

/ 
/ 

Fig. 2. The conformal mapping (4.18). 
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The  cross-sect ions  $1 and  $2 are  m a p p e d  o n t o  the in ter ior  and  ex te r ior  regions o f  the ring, 
respect ively,  and  the bounda r i e s  C~ and  C2 o n t o  the circles ] u] = cc and  I u] = ~ -  ~, respect-  
ively. The  po in t  z = oo co r r e sponds  to  u = 1. F inal ly  fo r  z �9 C 1 (i.e. I u l = �9 or  u = cce ~~ 
one  has  

2fl 2i flu 
dz = (1 - u) ~ d u  = (1 - u) ~ d 0 "  (4.20) 

F r o m  here  on  the  pa ths  fo r  the  two  cases (F) and  (S) diverge,  and ,  the re fore ,  we have  to  
cons ider  these cases separate ly .  We  s tar t  with 

The ferromagnetic case (F) 

F o r  the ca lcu la t ion  o f  F(z) ,  it is conven ien t  to  in t roduce  the func t ion  

G(u) = u( i (u)  - 1) if(u) = F(z(u)), ~ <<. l ul ~< oc-' (4.21) 
(1 - u)  2 ' 

F r o m  (3.26) 4 it fo l lows tha t  

if(u) = 1 + O((1 - u)2), u o  1, (4.22) 

and ,  hence,  G(u) is regular  fo r  u = 1. F r o m  (3.26) ~'2, (4.3) and  (4.4), we conc lude  tha t  

(i) G(u) analyt ical ,  ~ < lul < ~- ' ,  

U 
(ii) G(u) + (i - u) ~ �9 ~" [u[ = ct, 

(iii) G(u) = G(u-1), 0c < lul < ~-1, 
(4.23) 

__G(U) du = 0. (iv) ul=~ u 

Deve lop ing  G(u) in a L a u r e n t  series and  e m p l o y i n g  the  p roper t i e s  o f  G(u) listed in (4.23) we 
conc lude  tha t  G(u) mus t  be o f  the  f o r m  

n o~ 2n 
G(u) = g,(u" + u-n); g, =- n >/ 1. (4.24) 

n = l  1 - -  OC 2 n '  

This  yields fo r  F 

if(u) = F o + ~ F,(u" + u-"), (4.25) 
n = l  

with  

F 0 = 1 + 2g, ,  F, = g ,+ l  - 2g, + gn_t ,  n >~ 1, go = 0. (4.26) 
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For  the solution o f  (4.17.1) we need explicit expressions for the integrals occurring in the 
right-hand side of  (4.15). Using the symmetry of  F (i.e. (4.3) ~) and (4.20) we deduce with 
(4.25) that, for z0 e SI w CI, 

1 ~c ~ F(z) d z -  1 Ic F(z) dz 
~n/ z - z o 2~i , z + z-------o 

, , )  
- + - du 

2;zi . I =, 1 u u n o  1 

= ~. F, (ug - 1) = g, + ~ F, ug, lu01 ~ ~. (4.27) 
nffil n= l  

The first integral in the right-hand side of  (4.15) is calculated by transforming the path 
of  integration C into the circle lul = ~, developing log (1 - v), (v = uuo ~ or v = UUo) 
in a power  series in v and applying Cauchy 's  residue theorem. In this way we obtain 
(L = 2~) 

( z  - Re t fc, log 

{ 1 
- 2re Re 2-~n/~l~l=~ [log (--u0) + log (1 - uuo ~) - log (1 -- UUo)] 

• 
I u  1 1 

__~2 U - - 1 ]  du} 

x~){ ~ (1 -c t20  } lu01 ~. (4.28) 
- 2 r r  l o g ~ - -  Re ug , = 

n = l  l'l 

The right-hand side RF(Zo) of  (4.17.1) is now explicitly known. The symmetry relation for 
f ( z ,  ~) implies (~(u)  = r 

(I) 7 ( - - Z )  = - -  (I)~ (Z), ~/~ (U - I  ) = - -  (~/~ (U). ( 4 . 2 9 )  

Furthermore,  the function W F must  be analytical in the inner region I u [ < a. Consequently,  
the Laurent  series for ~F and W F are of  the form 

~ ( u )  = ~, ~b.(u" - u-"), c, ~ lul ~ ~-~, (4.30.1) 
n= l  

and 

%(u) = ~ r 
n~0 

lul <~ a. (4.30.2) 
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Substituting (4.27) and (4.28) and the series (4.30) into (4.17.1), we see that these integral 
equations are satisfied if 

x~ ) _ l + 2 g  1 = _ 1 (1 +~ 2 ) _  
2re log ~2 log e2 1 -~ ' 

x~ ) 1 -- ~2,, 
qJ,, = F, 2n n , n >~ 1, (4.31) 

0~ 2n 

~0 = 0, ~b n - l _ g 2 n l ~ ,  , n ~ > l .  

It is now a mat ter  o f  simple algebra to derive that  for z e C~ or l ul = ~, 

dO[  d~r '~  d 
dz  dz ] d z  = ~uu (r -- ~ r )  du 

(K~) nF, ~ du 
\ 2re 1 ~ ~2,] (u" + ~2"u-") - - .  (4.32) 

n = l  U 

The final step consists o f  the substi tution of  (4.32) into the buckling formula (4.16.1) and the 
calculation o f  the thus obta ined integrals. This leads to the following explicit result for the 
buckling field (Iy = nR4/4) 

I.toE6 4 ~ itc~ ) 1 F(z) 
16Bo 2 = Im [ ~ 2~zifc, z_---~--m dz 

- ~ \ 2 n  n = l  
1 ~ ~z~]" ~n/fl,,l=,, P(u)(u" + ct2"u -") i u 

- 2n 1 + g ,  + , , = l  ~ F"~t2" +, ,= ,~  F"(1 +ct2") 1 - ~x 2" "~nJ 

log ~2 1 -- V )  + n = l  ~ nF~, 1 -- - ~ /  > 0, OF). (4.33) 

In the above calculation we have used that 

1 F(z) 1 F(z) 1 ~c2 F(z) - - - d z =  - - - d z -  
, z - - m  z - - m  

- -  dz, (4.34) 

where the first integral in (4.34) is equal to F(oo) = 1 and the second is given by (4.27) for 
u0 = ~t 2. Moreover ,  in the final step we have used that 

• F,, = --gl ,  1 + 2g I -- 1 + ~t 2 
,, = i 1 -- ~t 2" (4.35) 



168 P.H. van Lieshout, P .M.J .  Rongen and A.A.F.  van de Ven 

The coefficients F, follow, for given ~, from (4.26) and (4.24). According to its definition 
(4.18)-(4.19), 

a a~ 
= m - - 1 ~  - R - - 1 ,  (4.36) 

the number  ~ is directly related to the ratio a/R  and, hence, our  final result (4.33) represents 
an explicit expression for the buckling field as a function of  the ratio aiR. Numerical  results 
will be presented in the final section of  this paper. 

The superconducting case (S) 

In this case we introduce G(u) as 

/V(u) 
G(u) = i[3u (1 - u) z '  c~ ~< lul ~< ~ - 1  (4.37) 

and this function satisfies (note that P(1) = 0, see (3.26)) 

(i) G(u)analyt ical ,  ~ < lul < ~-1, u ~ 1, 

(ii) G(u) ~ ~, [u[ = ~, 

(4.38) 
(iii) G(u) = O((1 - u)- l ) ,  u ~ 1, 

1 G(u) du = �89 (iv) ~ ,~=~ u 

while the symmetry condit ion here reads (cf. (4.3)) 

a(u )  = - G ( u - ~ ) ,  (S,); G(u) = G ( u - ' ) ,  (So). (4.39) 

The properties (4.38) together with the symmetry condit ion (4.39) yield 

G(u) = 1 - u . . . .  ~ g,u"; g" = - g - "  - 1 + ct z"' n >1 1, go = �89 

(4.40.1) 

and 

G(u) = �89 (So). (4.40.2) 
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We can now determine F from (4.37) and next the integral in the r ight-hand side of  (4.12). 
As before, Ws is taken equal to this integral and, thus, 

Ic 1 Ic F(z)  1 __F(z) d z  = _ - - d z  

Ws(Z~ -- rci 2z  -- z o nt , z  + z o 

s ] = -/~L - ~ + g 1 +  .=1 F.u  8 , F .  = g . . 1 - - 2 g . + g . _ , ,  luol ~< ~,(So), 

(4.41.1) 

2i i 
W s ( Z o )  - - (1 -- u0), lu01 ~< ~, (So). (4.41.2) 

Zo+ /~ /~ 

Accounting for the symmetry  conditions for O~, we write the function ~ (u), ~ ~< I u l ~< 
0~ -1, as 

i s ~bn(u" + u-") ,  (Se), 

t~- (u) = i ~b,u" = (4.42) 
n~ --oo s 

i q~n(u" -- u-") ,  (So). 
.=1 

The coefficients q~,, n /> 1 follow from the relation Im(I)~- = ImWs, for l ul = ct (the 
constant  ~b0 is irrelevant, but  can be chosen such that ~ ( z  ~ oo) = t~-(1) = 0). This 
yields 

2 0t 2n 

~b, = f l l  + 0t 2~F"' n >~ 1,(St),  (4.43.1) 

and 

~b 1 - 282 , q~, = 0, n /> 2, (So). (4.43.2) 

We now are able to evaluate the r ight-hand side of  (4.16.2). Substituting the preceding results 
and calculating the integrals in the usual way, we finally arrive at (use the Laurent  series for 
F and Iy = 1rR4/4) 

7t2Et~4R 2 4 ( 1 - - 0 e  2~ ) 
- #2Y, nC ,=,  +~ -~  

4 n0t~(1 - -  0~2n) 3 

82 ,=l s (1 -I-0~2n-2)2(1 q-0~2n)3(1 -I-0~2~+2) 2 > 0, (Se), (4.44) 
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and 

rr: E f 4 R 2 1 m 
~/o2 - 2/~3 (o~ + ~-1) _ /~3 < O, (So). (4.45) 

Hence, we conclude that in case the currents run in the same direction (Se) the system buckles 
in a symmetric mode (i.e., opposite displacements), where the critical current is given by 
(4.44) as function of  the ratio aiR. On the other hand, as the right-hand side of  (4.45) is 
negative, there is no symmetric buckling in the (So)-case (opposite currents). This does not 
imply that the (S.)-system is always stable, but the critical current is much higher (at least 
0 ( 6 - l ) ,  compare with the case of  one beam) than the one for the (Se)-system. 

5. Conclusions and discussion 

In this section we look at the results of  Section 4 into more detail for some specific cases. Let 
us first apply the result (4.33) to the case of  two cantilevered rods of  circular cross-section, 
radius R, length l. In this case is 6 = nR/21 and, then, (4.33) yields 

B0 1 { ~ R ~  2 
- ~ \  4l J '  (5.1) 

where Qr = Qr(rn) stands for the right-hand side of  (4.33). This result shows that for fixed 
m = a /R  the buckling load is proportional to R2/l 2 (just as in the case of  one single beam). 
The dependence of B 0 on the distance between the rods is expressed by the factor Qr. In 
Table 2 some values for QF as function of  m are given. 

Table 2. Values for Qe 

m 1.04 1.25 1.43 1.67 2.00 2.50 3.30 5.00 10.0 

Q~ 31.7 2.52 1.28 0.788 0.537 0.371 0.277 0.228 0.169 

The corresponding Bo/~-~E-values  as function of  m and for fixed (R/l)-value (i.e. R/l  = 
0.01) are given in Table 3. The data in this table indicate an increase in the buckling value 
with an increase in the distance between the rods. 

Our numerical results are in good correspondence with those of  [8] in case Pr = 5. l&. In 
[8] the same problem as mentioned here is treated in a completely different way and for more 
general values o fp ,  (i.e. here #r is assumed to be so large that even #r(2R) 2 >> 1, whereas in 
[8] it is only assumed that/zr >> 1 (e.g. #r > 100), but p,(2R) 2 may remain finite). 

A second aspect deserving attention is the influence of  the direction of  the basic field B 0 
with respect to the plane through the two rods. Thus far, we have taken the direction of  B0 
parallel to this plane. Let us now consider the more general case that B 0 makes an angle 00, 
00 e [0, re/2], with the positive e~ -axis. We investigate the influence of  the value of  00 on the 
buckling value and we determine the direction of  the buckling deflection, which, as we shall 
show, is not always equal to the direction of  130. 
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We assume a symmetrical buckling mode and we denote the angle between the deflection 
of the first beam and the positive el-axis by 01. This means that the displacements of the 
central lines of the first rod are given by 

ul(a, O) = w(z)  cos 01; Uz(a, O) = w(z)  sin 01, (5.2) 

whereas those of the second rod are equal but opposite. For circular cross-sections one has 
Ix = Iy = rcR4/4 and, thus, the elastic energy remains as given by (2.2). 

Our basic formula (1.1) for the buckling field was derived in [1] by putting a functional 
J equal to zero (of. [1], (6.16)-(6.22)). Starting from this formula we here derived a.o. (3.5.1) 
and (4.16.1). With the displacement field according to (5.2), the functional J depends on 01. 
Analogous to the derivation of (3.5.1) we now obtain 

/ r # 0 E 6  4 
J(O~) - 4B~ YoD, (Bx cos 0~ + By sin 01) ~-~ (~b + B~ cos 01 + By sin 01) ds. 

(5.3) 

According to [1], the correct value 01 of 01 can be determined by variation of J with respect 
to 01, i.e., 

dJ  (0 l) and  d2 J 
dO, ~ (0,) > 0. (5.4) 

The lowest buckling value is then obtained from 

J(O,)  = o. (5.5) 

The further analysis of  this problem runs exactly along the same lines as the one for 00 = 0 
presented in Section 4. Therefore, we refrain from giving the details of  the calculations here. 
The only extra complication is due to a more general condition at infinity for the analytical 
function F(z)  introduced in (3.25). Instead of  (3.26) 4 we must use here 

F(z)  ~ e -i~176 + O(z-2), Izl ~ ~ .  (5.6) 

As in (4.21)-(4.26) we can solve F(z), yielding (compare with (4.24)-(4.26), and note that the 
F,'s are no longer real) 

F(z)  = F o + ~" F,(u" + u-" ) ,  (5.7) 
n = l  

with 

F o = e - i ~ 1 7 6  F, = g , + l - - 2 g ,  + g , _ l ,  n ~> 1, go = 0, 

g =  no~2nlC~176 sin 00 ] 
1 -- at 2-----------~ + i 1 + ~2----------~ , n >/ 1. (5.8) 
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The evaluation of the right-hand side of (5.3) is a generalization of the derivation of (4.16.1) 
(in which J is already put equal to zero). The result reads (g corresponds to gv but is no longer 
an imaginary function; see (3.42) and (3.45)) 

7z,oE6 a ( dg ix~' ~ 
J(01) - 4B2o Im ~c, (~ + Fe2i~ -~s + '~~-~ J ds. (5.9) 

The function g satisfies (compare with (4.32)) 

d-~ 2rt 1 o~ 2n (un 
n = l  

nF~ + c~2,,u_,, ) du  + ~z2, , (u" - a2"u-") du  
U n = l l  + U '  

(5.10) 

while x~ ) is given by (compare with (4.31) 1) 

x~) e-i~ + 2gl 

2n log ~2 
(5.11) 

Substituting (5.7), (5.8), (5.10) and (5.11) into (5.9) we obtain 

1 #oE6 4 
4--~ J(01) - 16Bo 2 (Co + Cl cos 201 + c2 sin 201), (5.12) 

where the coefficients co, Cl and c2, which are independent of 0 1 ,  a r e  given by 

-- 1 12 ~ 2n~ 2" 
Co - 21og~ 2IF~ + . = 1 1 - - ~ 4 . 1 F . I  2 > 0 ,  

cl - 2 1 o g a ~ R e { F ~  2} + , = i n - - 1  -- a4~Re{F 2}, (5.13) 

1 ~ 1 + 0~ 4n 

c2 - 2 1 0 g ~ I m { F  g} - - , = i n - - 1  -- ~4~Im{F 2}. 

Application of (5.4) to (5.12) yields 

tan 20j c2 and cos 201 - - -  > 0, (5.14) 
C 1 C 1 

which after substitution into (5.5) finally results in 

#0E6 4 
16Bo 2 - c o + (c~ + c~) t/2. (5.15) 
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In Table 3 we have listed some critical B0-values for various values o f  m, for 00 = 0, re/4, 
n/2 and for R/I = 0.01. In this table , /~ represents the bucking value for two rods relative 
to the value of  one rod, which is given by (3.15) in case a = b = R. Hence 

Bo ~2) 1 
Bo (') (2r(6)[Co + (c~ + c~)'/2]) '/2" (5.16) 

Table 3. Relative buckling values for two ferromagnetic rods (R/I = 10 -2) 

rn 1.04 1.25 1.43 1.67 2.00 2.50 3.30 5.00 10.00 

/~ 00 = 0 0.061 0.216 0.302 0.385 0.467 0.547 0.628 0.717 0.833 
0o = �88 0.086 0.305 0.415 0.477 0.558 0.609 0.665 0.733 0.837 
0o = �89 0.509 0.541 0.564 0.589 0.617 0.650 0.690 0.747 0.841 

From the above table we see that the critical B0-value depends on the angle of  incidence 00 of  
B0. This is illustrated in the first graph in Fig. 3, which shows a tendency for B0 to increase when 
00 increases from 0 to re/2. In the second graph of  Fig. 3 the difference between 0] and 00 is 
plotted against 00. It turns out  that 0] = 00 if00 = 0 or  00 = n/2. Hence, the deflection and 
the basic field B0 are in the same direction when B0 is either parallel or normal to the plane 
of  the rods. In both cases one has c2 = 0, while in the first case Cl > 0 and in the second 
case c~ < 0. Fur thermore,  Fig. 3 shows that the difference between 00 and 0 is maximal for 
0o in the ne ighbourhood o f  re/4 and that this difference decreases with increasing m. 

As a second example, we shall apply the result (4.44) to the case of  two infinitely long 
superconducting rods o f  circular cross-section, simply supported over periods of  length l. 
Then, 6 = 7zR/l, and (4.44) yields 

z - { , , R )  2 

t 
.7 .6 

. 2 

Jo. 
0 20,m 

�9 = .  

(5.17) 

.2 .t, .6 .8 10 
zoom 

Fig. 3. The relative buckling value and the deflection angle as function of 0o for given m. 
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where Qs = Qs(m) stands for the right-hand side of  (4.44). This relation formally resembles 
(5.1), and, hence, the behaviour of  1 o under varying R/I or m is the same as that of  B 0 . Values 
of  Qs as function of  m are given in Table 4. We note that for larger values of  m the factor 
1/x/-Q-ss approaches m. 

Table 4. Values of  Qs 

m 1 1.5 2 3 4 6 8 10 

Qs 0.311 0.220 0.168 0.0935 0.0568 0.0266 0.0153 0.00985 
1/. O/~ 1.79 2.13 2.44 3.27 4.20 6.13 8.09 10.08 

It is of  some technical interest to compare this result with the result of  a less accurate but 
more simple solution which is based upon a generalization of  the law of Biot and Savart. The 
basic relation for this method is given by Moon in [2], eq. (2-6.4). Let L~ and L2 be two curves 
in E3 carrying the same electric current 10. Moreover, let P1 and P2 be two points on L~ and 
L2 with position vectors rl (s~) and r2(s2), respectively. Here, s~ and s2 are the arc length 
parameters along L~ and L2, respectively. The force per unit of  length in P1 acting on L~ is 
now calculated as the Lorentz-force due to the current through L~ times the magnetic field 
created by L2. The latter follows from a generalization of  the law of Biot and Savart (cf. [2], 
(2-6.3)). According to [2], (2-6.4) this force is then given by 

F(st) - ~ I 2  (t~ x (t: x R) )  
47z ;L2 R 3 ds2, (5.18) 

where t~ a n d  t2 are unit tangent vectors along L 1 and L2, respectively and R is the position 
vector from P2 to P~, i.e. 

drl dr2 R = rl - r2. (5.19) 
tl - -  d S l '  t2 -- ds2' 

The above formula for F is in so far an approximation in that, firstly, the three-dimensional 
current carrying bodies are considered as one dimensional curves (thus, for instance, the 
specific shape of  the cross-section and the distribution of  the current over this cross-section 
are disregarded) and, secondly, the force due to the self field of  Ll is neglected. Nevertheless, 
it will turn out that this approach will give good agreement with our results as long as the 
two current filaments are not too nearby. 

We shall now apply the above formula to our problem of two straight, parallel, infinitely 
long current carriers with equal currents I 0. In the undeformed state, the filaments are a 
distance 2a apart and directed in the e3-direction. We define z ..= s~ and ~ ,= s2. The 
deflections of  the filaments are directed in the el-direction and denoted by Ul (z) and u2(0, 
respectively. Hence, 

rt = [a + ul(z)]el + ze3, r2 = [ - a  + u2(~)]ei +  e3, 

R = [2a + ut(z) - Uz(0lel + (z - 0e3,  (5.20) 

tl = u~(z) et + e3, t2 = u ~ ( O e l  + e3. 
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These formulae enable us to evaluate (5.18). In doing so, we must realize that the displace- 
ments are small and, hence, that a linearization with respect to these displacements is 
allowed. In this way we approximate R 3 by 

[ 6a ] 
R 3 = / ~  1 + ~ ( u ,  - -  u2) , (5.21) 

where 

R0 -- R0(z,O = x/4a2 + ( z -  02 /> 2a. (5.22) 

In the same way we linearize the numerator  of the integrand in (5.18), thus finding an 
expression for F of  the form 

F(z) = Fr176 + f(z), (5.23) 

where F t~ is independent of and f linear in the displacements. Hence, F t~ is the force in the 
prebuckled state (causing the so called predeflections), which does not play any role in the 
determination of  the buckling value for I0. Therefore, we define q(z) as the force per unit of 
length in the e~-direction acting on the deflected beam by 

q(z) = (f(z), e~), (5.24) 

and this force density is related to the deflection by the well-known beam equation 

eIyu"(z) = q(z). (5.25) 

The procedure described above yields the following expression for q (z) 

q(z) = /z~ I~ I n ,  - 1 4n ~-~ (z) - u2(O - (z - Ou~(O 12a2(ul(z) - u2(O) d(. 

(5.26) 

For  the further evaluation of  (5.26) we assume symmetrical buckling, i.e. u~ (z) = -u2  (z) =.. 
u(z). After two partial integrations, in which it is used that u ( 0  is a periodic function in (,  
(5.26) becomes 

= l t ~  2 ~ d ( ] .  (5.27) q(z) ~ ~_~ u(O u(z) 

Finally, we realize that the second term in the right-hand side of  (5.27) is O(a2/l 2) with 
respect to the first term. Since we have restricted ourselves to the cases a ,~ l, we may neglect 
this term. Thus (5.25) takes the form 

- -  u --- 0. (5.28) dz 4 4~za2 Ely 
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The boundary conditions for u(z) are (simply. supported) 

u(O) = u(l)  = u " ( 0 ) =  u"(l) = 0. (5.29) 

The first buckling mode satisfying these four boundary conditions is 

u(z) = A sin rcz, (5.30) 

which after substitution into (5.28) (with Iy = nR4/4) leads to the following result for the 
buckling value 

U/~I0 = 7 r a ( - ~ - )  2. (5.31) 

Table 4 shows that 1/v/-Q-~s ~ m = a/R for m large (relative difference is less than 5% for 
m >/ 4) and then (5.17) becomes equal to (5.31). Hence, we conclude that for a/R >/ 4 the 
Biot-Savart approach presented here gives a good approximation for the buckling value. 
However, when the filaments come nearer to each other the correspondence becomes worse. 
In the limit m --, 1 the formula (5.31) gives a buckling value that is about 80% lower than 
the one according to (5.17). 

We conclude with the remark that the results of  Section 4 for two parallel, superconduct- 
ing rods will be used in a forthcoming article [9], in which the buckling problem for two 
parallel toroidal superconductors is investigated. The fields for two rods, as found in the 
present paper, constitute a useful first approximation for the fields for two toil in case these 
tori are slender. 
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